Autumn Scheme of Learning

Year 3

\#MathsEveryoneCan

2020-21

Rese

New for 2020/21

2020 will go down in history. The world has changed for all of us.

We want to do as much as we can to support children, teachers, parents and carers in these very uncertain times.

We have amended our schemes for 2020/21 to:
\star highlight key teaching points
\star recap essential content that children may have forgotten
\star flag any content that you might not have covered during the school closures period.

We hope these changes will add further value to the schemes and save you time.

Lesson-by-lesson overviews

We've always been reluctant to produce lesson-bylesson overviews as every class is individual and has different needs. However, many of you have said that if blended learning becomes a key feature of school life next year, a weekly plan with linked content and videos could be really useful.

As always, we've listened! We've now produced a complete lesson-by-lesson overview for Y1 to Y9 that schools can use or adapt as they choose. Each lesson will be linked to a free-to-use home learning video, and for premium subscribers, a worksheet. This means that you can easily assign work to your class, whether they are working at home or in school.

Inevitably, this lesson-by-lesson structure won't suit everyone, but if it works for you, then please do make use of this resource as much as you wish.

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of opportunities to build reasoning and problem solving elements into the curriculum.

For more guidance on teaching for mastery, visit the NCETM website:
https://www.ncetm.org.uk/resources/47230

Concrete - Pictorial - Abstract

We believe that all children, when introduced to a new concept, should have the opportunity to build competency by taking this approach.

Concrete - children should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - alongside this children should use pictorial representations. These representations can then be used to help reason and solve problems.

> Abstract - both concrete and pictorial representations should support children's understanding of abstract methods.

Need some CPD to develop this approach? Visit www.whiterosemaths.com for find a course right for you.

Supporting resources

NEW for 2019-20!
We have produced supporting resources for every small step from Year 1 to Year 11.

The worksheets are provided in three different formats:

- Write on worksheet - ideal for children to use the ready made models, images and stem sentences.
- Display version - great for schools who want to cut down on photocopying.
- PowerPoint version - one question per slide. Perfect for whole class teaching or mixing questions to make your own bespoke lesson.

For more information visit our online training and resources centre resources.whiterosemaths.com or email us directly at support@whiterosemaths.com

White

Meet the Characters

Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who's your favourite?

5

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Number: Place Value			Number: Addition and Subtraction					Number: Multiplication and Division			
$\begin{aligned} & \text { no } \\ & \text { 은 } \\ & \text { ín } \end{aligned}$	Number: Multiplication and Division				Statistics		Measurement: Length and Perimeter			umber: Fractions		co .0 +0 00 0 0 0 0
$\begin{aligned} & \text { 㐫 } \\ & \stackrel{1}{5} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	Number: Fractions			Measurement: Time				etry: ties of pe	Measurement: Mass and Capacity			

White
 Autumn - Block 1
 R@se
 Maths Place Value

Overview

Small Steps

Notes for 2020/21

Represent numbers to 100
Tens and ones using addition
Hundreds
Represent numbers to 1,000
100s, 10 s and 1s (1)
100s, 10 s and 1s (2)
Number line to 1,000
Find 1, 10, 100 more or less than a given number
Compare objects to 1,000
Compare numbers to 1,000
Order numbers
Count in 50 s

Children should already have some understanding of tens and ones from $Y 2$, however it may be useful to recap this content before exploring hundreds.

You may want to ensure that you use plenty of examples of numbers within 100 including number lines to 100 before moving on to the number line to 1,000

Represent Numbers to 100

Notes and Guidance

Varied Fluency

Children need to be able to represent numbers to 100 using a range of concrete materials, such as bead strings, straws, Base 10 equipment etc.

Children should also be able to state how a number is made up. For example, they can express 42 as 4 tens and 2 ones or as 42 ones.

Mathematical Talk

How have the beads been grouped? How does this help you count?

Can you show me the tens/ones in the number?
Which resource do you prefer to use for larger numbers? Which is quickest? Which would take a long time?

Here is part of a bead string.

-00000000000000000-

Complete the sentences.
There are \qquad tens and \qquad ones.
The number is \qquad .
Represent 45 on a bead string and complete the same sentence stems.

Match the number to the correct representation.

One ten and five ones

Thirty-five
$-000000000000000-$
Represent 67 in three different ways.

Represent Numbers to 100

Reasoning and Problem Solving

How many two digit numbers can you $70,20,72,27$ make using the digit cards?

What is the largest number?
Prove it by using concrete resources.
What is the smallest number?
Prove it by using concrete resources.
Why can't the 0 be used as a tens number?

The largest number is 72

The smallest
number is 20
Because it would make a 1 digit number.

Tens and Ones (2)

Notes and Guidance

Children continue to use a part-whole model to explore how tens and ones can be partitioned and recombined to make a total.
Children will see numbers partitioned in different ways. For example, 39 written as $20+19$
This small step will focus on using the addition symbol to express numbers to 100 . For example, 73 can be written as $70+3=73$

Mathematical Talk

What clues are there in the calculations? Can we look at the tens number or the ones number to help us?

What number completes the part-whole model?
What is the same/different about the calculations?
What are the key bits of information? Can you draw a diagram to help you?

Varied Fluency

Match the number sentence to the correct number.

\square Complete the part-whole model and write four number sentences to match.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$=$ \qquad $+$ \qquad $=$ \qquad $+$

Dora has 20 sweets and Amir has 15 sweets. Represent the total number of sweets:

- With concrete resources.
- In a part-whole model.
- As a number sentence.

Tens and Ones (2)

Reasoning and Problem Solving

Teddy thinks that,	$40+2=42$ Teddy has just combined the numbers to make 402 without thinking about their place value.
Can you show the correct answer using concrete resources?	

Fill in the missing numbers.	1 ten +3 ones $=$ 13 2 tens +3 ones $=$ 23 1 ten $+\mathbf{3}$ ones $=13$ 3 tens +3 ones $=$ 33 4 tens +3 ones $=$ 43
4 tens +3 ones $=$ tens $+\mathbf{~ o n e s ~ o n e s ~}=\mathbf{4 3}$	5 tens +3 ones $=$ 53
What would the next number in the pattern be?	

Hundreds

Notes and Guidance

Children build on their understanding of tens and link this to 100
This is the first time they explore 100 explicitly. It is crucial children understand that ten tens make 100 and a hundred ones make 100
They use a variety of concrete equipment to see this relationship. Once children understand the concept of 100, they will count objects and numbers in multiples of 100 up to 1,000

Mathematical Talk

How many tens have you made? How else can we say this?
What do these digits represent?
How many ones have you made? How else can you say this?
If we continue counting in tens, what do we say after 100 ?
What numbers wouldn't we say?

How many sweets are there altogether? Write your answer in numerals and words.
\square Complete the number tracks.

Varied Fluency

Use bundles of straws in tens, bead strings and Base 10 to explore how many tens make a hundred. Children use the equipment to count up and down in tens to make 100
There are 3 tens this is thirty.
There are \qquad this is \qquad .

There are \qquad tens in one hundred.

There are 100 sweets in each jar.

Year 3|Autumn Term | Week 1 to 3 - Number: Place Value

Hundreds

Reasoning and Problem Solving

True or False?

If I count in 100s from zero, all of the numbers will be even.
Convince me.

Sort these statements into always, sometimes or never.

- When counting in hundreds, the ones column changes.
- When counting in hundreds, the hundreds column changes.
- To count in hundreds we use 3 -digit numbers.

```
True, because if
you start with zero
and add 100 you
get an even
number, and you
are adding another
even so the
number will
always be even.
```

- Never
- Always
- Sometimes

Whitney thinks the place value grid is Whitney is showing the number eight.

Hundreds	Tens	Ones
$\bigcirc \bigcirc \bigcirc$		
$\bigcirc \bigcirc$		
$\bigcirc \bigcirc \bigcirc$		

Do you agree? Explain why.
Using all of the counters, what is the smallest number you can make?

What other numbers could you make?

incorrect because

there are eight
counters in the
hundreds column
so they represent eight hundreds.
The number is
800
The smallest number that can
be made is 8

Other possible numbers include:
80
170
350
etc.

Numbers to 1,000

Notes and Guidance

In this small step, children will primarily use Base 10 to become familiar with any number up to 1,000

Using Base 10 will emphasise to children that hundreds are bigger than tens and tens are bigger than ones.

Children need to see numbers with zeros in different columns, and show them with concrete and pictorial representations.

Mathematical Talk

Does it matter which order you build the number in?
Can you have more than 9 of the same type of number e.g. 11 tens?

Can you create a part-whole model using or drawing Base 10 in each circle?

Varied Fluency

Write down the number represented with Base 10 in each case.

Use Base 10 to represent the numbers.
700
120
407
999
Mo is drawing numbers. Can you complete them for him?

Year 3|Autumn Term | Week 1 to 3 - Number: Place Value

Numbers to 1,000

Reasoning and Problem Solving

\(\left.$$
\begin{array}{l}\begin{array}{l}\text { Teddy has used Base } 10 \text { to represent the } \\
\text { number 420. He has covered some of } \\
\text { them up. }\end{array} \begin{array}{l}110 \text { is the missing } \\
\text { amount. } \\
\text { Possible ways: } \\
1 \text { hundred and } \\
1 \text { ten }\end{array}
$$

11 tens

- 110 ones

10 tens and 10

ones

50 ones and 6

tens etc.\end{array}\right\}\)| - |
| :--- |
| Work out the amount he has covered up. |

Which child has made the number 315? | Dora and Mo have |
| :--- |
| both made the |
| number 315, but |
| represented it |
| differently. |

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s (1)

Notes and Guidance

Children should understand that a 3-digit number is made up of $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s .

They read numbers shown in different representations on a place value grid, and write them in numerals.

They should be able to represent different 3-digit numbers in various ways such as Base 10 or numerals.

Mathematical Talk

What is the value of the number shown on the place value chart?

Why is it important to put the values into the correct column on the place value chart?

How many more are needed to complete the place value chart?

Can you make your own numbers using Base 10? Ask a friend to tell you what number you have made.

Varied Fluency

What is the value of the number represented in the place value chart?

Hundreds	Tens	Ones

Write your answer in numerals and in words.
\square Complete this place value chart so that it shows the number 354

Hundreds	Tens	Ones

Represent the number using a part-whole model.
How many different ways can you make the number 452? Can you write each way in expanded form? (e.g. $400+50+2$)

Compare your answer with a partner.

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s (1)

Reasoning and Problem Solving

Hundreds	Tens	Ones	Possible answers:
I disagree because there are six hundreds, four tens and seven ones so the			
number is 647.			

The numbers that can be made are:

- 503
- 530
- 305
- 350
- (0)35
- (0)53

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s (2)

Notes and Guidance

Children use place value counters to represent different numbers and understand how a number is made.

Their work with Base 10 should help them understand that the hundreds counter is worth more than the tens counter and the tens counter is worth more than the ones counter.

Mathematical Talk

What is the same and what is different about Base 10 and place value counters?
Why do we not call this number 300506 ?
What number would be shown if $1 / 10 / 100$ was added?
Why is it important to put the values into the correct column on the place value grid?

What do we need to do if there is a zero in the number we are representing?

Varied Fluency

What number is shown on the place value chart?

Hundreds	Tens	Ones

If one more 10 is added, what number would be shown?
Use place value counters and a place value grid to represent the numbers:

$$
615
$$

$$
208
$$

$$
37
$$

\square Use <, > or = to make the statement correct.

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s (2)

Reasoning and Problem Solving

Do you agree? Explain your answer.

I think it shows 670

Dora is correct because there are six counters in the hundreds column, none in the tens column and seven in the ones column.

If it was 670 there would be seven counters in the tens column and none in the ones column.

Year 3|Autumn Term | Week 1 to 3 - Number: Place Value

Number Line to 1,000

Notes and Guidance

Children estimate, work out and write numbers on a number line.

Number lines should be shown with or without start and end numbers, and with numbers already placed on it.

Children may still need Base 10 and/or place values to work with as they develop their understanding of the number line.

Mathematical Talk

What is the value of each interval on the number line? Which side of the number line did you start from? Why? When estimating where a number should be placed, what facts can help you?
Can you draw a number line where 600 is the starting number, and 650 is half way along?
What do you know about the number that A is representing? A is more/less than \qquad What value can A definitely not be? How do you know?

Varied Fluency

Draw an arrow to show the number 800

Draw an arrow to show the number 560

Which letter is closest to 250 ?

Estimate the value of A .

Year 3|Autumn Term | Week 1 to 3 - Number: Place Value

Number Line to 1,000

Reasoning and Problem Solving

If the arrow is pointing to 780, what could the start and end numbers be? Find three different ways and explain your reasoning.	Example answers: Start 0 and end 1,000 because 500 would be in the middle and 780 would be further along than 500
	Start 730 and end 790

1, 10, 100 More or Less

Notes and Guidance

Building on children's learning in Year 2 where they explored finding one more/less, children now move onto finding 10 and 100 more or less than a given number.

Show children that they can represent their answer in a variety of different ways. For example, as numerals or words, or with concrete manipulatives.

Mathematical Talk

What is 10 more than/less than \qquad ?

Show ten more and ten less than the following numbers using Base 10 and place value counters.

What is 100 more than/less than \qquad ?

Which column changes? Can more than one column change?
What happens when I subtract 10 from 209?
Why is this more difficult?

Varied Fluency

Put the correct number in each box.

Number

Number

10 more

$550 \quad 724$
302
\square Complete the table.

100 less	Number	100 more
		\square

1, 10, 100 More or Less

Reasoning and Problem Solving

10 more than my number is the same as	The number described is 210
	because 100 less
What is my number?	than 320 is 220 , which means 220
Explain how you know.	is 10 more than the original
Write your own similar problem to describe the original number.	number.
I think of a number, add ten, subtract one hundred and then add one.	The start number was 345 because one less than 256
My answer is 256	is 255 , one
What number did I start with?	hundred more than 255 is 355 and ten less than
Explain how you know.	355 is 345
What can you do to check?	To check I can follow the steps back to get 256

What number could it have been?

Compare Objects

Notes and Guidance

Children use objects to represent numbers to 1,000 When given two numbers represented by objects, they use comparative language and symbols to determine which is greatest/smallest. Children can make the numbers using concrete manipulatives and draw them pictorially.
Use stem sentences to ensure the correct vocabulary is being used e.g. \qquad is greater than \qquad -

Mathematical Talk

How do you know which number is greater?
Do you start counting hundreds, tens or ones first? Why?
What strategy did you use to compare the two numbers? Is this the same or different to your partner?

Are the Base 10 and place value counters showing the same amount? How do you know?

Is there only one answer?

Varied Fluency

Represent and compare the numbers using place value counters.

100 s	10 s	1 s

$$
452
$$

542

Use $<,>$ or $=$ to make the statements correct.

Draw objects to make the statement true.

Year 3|Autumn Term | Week 1 to 3 - Number: Place Value

Compare Objects

Reasoning and Problem Solving

Explain why.
How else can you represent the number?

The part-whole model is the odd one out because it shows 643 whereas all the other images show 543

Children could show 543 in a part-whole model correctly, in Base 10 a different way or with place value counters in a different way.

Explain your answer.

The image is not correct because the number 244 is represented on both sides of the inequality symbol.

An equal sign should have been used.

The number on the left must be made larger or the number on the right must be made smaller, to make this true.

Year 3|Autumn Term | Week 1 to 3 - Number: Place Value

Compare Numbers

Notes and Guidance

Children compare numbers presented as numerals rather than objects.
They need to be encouraged to use previous learning to choose an efficient method to compare the numbers. For example, children may choose to place the numbers on a number line, make them using concrete manipulatives or draw them in a place value chart to compare.

Mathematical Talk

What strategy did you use to compare the numbers?
What materials would be useful to help you compare the numbers?

How do you know which number is the smallest /greatest? Which column do you start comparing from? Why?

$$
600+70+4>600+
$$

\qquad $+4$

Two hundred and five $<$ \qquad
Can you find more than one way to complete the statements?

Year 3|Autumn Term | Week 1 to 3 - Number: Place Value

Compare Numbers

Reasoning and Problem Solving

I am thinking of a number.	446 or 464
It is between $\mathbf{3 0 0}$ and 500	The only possibilities to go in the hundreds column are 3 and
The digits add up to 14	The difference between the greatest digit and the smallest digit is 2
If it was 3, the	
other two digits	
would have to total	
11 and none of	
these pairs give	
the correct	
difference	
between the	
greatest and	
smallest digit, so	
Ihe number has to	
have 4 in the	
hundreds column.	

Order Numbers

Notes and Guidance

Children explore ordering a set of numbers from smallest to greatest and greatest to smallest. They need to be able to explain their reasoning throughout. They could still use Base 10 or other concrete materials to help them to make decisions about ordering.

At this point, children are introduced to the words ascending and descending.

Mathematical Talk

How do you know you have created the greatest/smallest number?

What number is being represented by the place value counters/Base 10?

What does the word ascending/descending mean?
Can you find more than one way to order your numbers?

Varied Fluency

Here are three digit cards.

What is the greatest number you can make?
What is the smallest number you can make?
Use the symbols $<,>$ or $=$ to make the statement correct.

$$
\text { (®) (1) (1) (1) } \because: \bigcirc 102
$$

\square Here is a list of numbers.

$$
\text { 312, 321, 123, 132, 213, } 231
$$

Place the numbers in ascending order.
Now place them in descending order.
What do you notice?

Order Numbers

Reasoning and Problem Solving

Whitney has six different numbers.	The first number could be anything between 215 and She put them in ascending order then accidentally spilt some ink onto her page. Two of her numbers are now covered in ink.
214, 242	
What could the hidden numbers be?	Thidden number could be anywhere between 257 and 288
Explain how you know.	

True or False?

When ordering numbers you only need to look at the place value column with the highest value.

False.

For example, if you are ordering numbers in the hundreds you should start by looking at the hundreds column, but sometimes two numbers will have the same number of hundreds and so you will also need to look at other columns.

Count in 50s

Notes and Guidance

Children use their knowledge of the patterns in the 5 times table to count in steps of 50

They should start from any given multiple of 50 and be able to count both forwards and backwards.

Mathematical Talk

What is the same and what is different between counting in 5 s and counting in 50s?

Hence, what is the connection between the 5 times table and the 50 times table?

Can you notice a pattern as the numbers increase/decrease?
Can you correct the mistakes in each?

Varied Fluency

Look at the number patterns.
What do you notice?

5	10	15	20	25	30

50	100	150	200	250	300

\square Complete the number tracks.

50		150	200			350		450	

	750	700	650			500			350

\square Circle and explain the mistake in each sequence.
$50,100,105,200,250,300 \ldots$
990, 950, 900, 850, 800 ...

Count in 50s

Reasoning and Problem Solving

Odd One Out

100, 150, 200, 215, 300
Circle the odd one out. Explain how you know.

Which is quicker: counting to 50 in 10 s or counting to 150 in 50 s?

Explain your answer.

```
215 is the odd one
out because it is
not a multiple of
50
If we were
counting up in 50s
from 100, it should
have been 250
not 215
It is quicker to
count to 150 in
50s as it would
only be 3 steps
whereas counting
to 50 in 10s would
be 5 steps.
```


Always, Sometimes, Never

Sort the statements into always, sometimes or never.

- When counting in 50 s starting from
- Always
- There are only two digits in a multiple of 50
- Only the hundreds and tens column
- Sometimes changes when counting in 50s.

White
 Autumn - Block 2
 Rose Maths
 Addition \& Subtraction

Overview

Small Steps

Notes for 2020/21

Add and subtract multiples of 100Add and subtract 1s(R)
Add and subtract 3-digit and 1-digit numbers - not crossing 10\square
Add a 2-digit and 1-digit number - crossing 10(R)
Add 3-digit and 1-digit numbers - crossing 10
Subtract a 1-digit number from 2-digits - crossing 10(R)
Subtract a 1-digit number from a 3-digit number - crossing 10
Add and subtract 3-digit and 2-digit numbers - not crossing 100
Add 3-digit and 2-digit numbers - crossing 100\square
Subtract a 2-digit number from a 3-digit number - crossing 100
Add and subtract 100s\square
Spot the pattern - making it explicit
\square Add two 2-digit numbers - crossing 10 - add ones \& add tens(R)
Subtract a 2-digit number from a 2-digit number - crossing 10(R)

Children should have met addition and subtraction of 2digits + 2-digits, although it may not be embedded and they may not have met the formal column method.

We have added steps that provide opportunity for recap/introduce the formal method of 2-digits + 2-digits.

Year $3 \mid$ Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Overview

Small Steps

Notes for 2020/21

Add and subtract a 2-digit and 3-digit numbers - not crossing 10 or 100
Add a 2-digit and 3-digit numbers - crossing 10 or 100
Subtract a 2-digit number from a 3-digit number - crossing 10 or 100
Add two 3-digit numbers - not crossing 10 or 100
Add two 3-digit numbers - crossing 10 or 100
Subtract a 3-digit number from a 3-digit number - no exchange
Subtract a 3-digit number from a 3-digit number - exchange

- Estimate answers to calculations

Check answers

Year 3 | Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add \& Subtract Multiples of 100

Notes and Guidance

Children are introduced to adding numbers greater than 100
They will apply their prior knowledge of adding and subtracting ones and tens to adding and subtracting multiples of 100

Using concrete manipulatives and pictorial representations throughout is important so the children can see the value of the digits.

Mathematical Talk

What is the same and what is different about 2 ones and 3 ones, 2 tens and 3 tens and 2 hundreds and 3 hundreds?

What is \qquad hundreds and \qquad hundreds equal to?

How many different ways can you represent $200+300$?

Varied Fluency

Complete:

2 ones and 3 ones is equal to \qquad ones.

2 tens and 3 tens is equal to \qquad tens.

2 hundreds and 3 hundreds is equal to \qquad hundreds.
\square Complete each box for $400+500$

Draw It	Write It _hundreds and _ hundreds is equal to hundreds	Part-Whole	Number Sentence

Use the bar model to complete the number sentences.

Add \& Subtract Multiples of 100

Reasoning and Problem Solving

\qquad \qquad $=800$ Each of the missing numbers are multiples of 100 Find all the possible missing numbers.	$\begin{aligned} & 0+800 \\ & 100+700 \\ & 200+600 \\ & 300+500 \\ & 400+400 \\ & 500+300 \\ & 600+200 \\ & 700+100 \\ & 800+0 \end{aligned}$
If I know $700-500=200$, what else do I know? Show me using concrete and pictorial representations.	Children may write all the related facts and link it to a bar model. They may also show 70 - 50 or 7-5

Add and Subtract is

Notes and Guidance

Children should start seeing the pattern when we add and subtract 1 and comment upon what happens.

This is the step before finding ten more than or ten less than, as bridging beyond a 10 should not be attempted yet.

The pattern should be highlighted also by adding 2 (by adding another one) and then adding 3

Mathematical Talk

What happens when we add 2 ?
What is the link between adding 1 and adding 2 ?
What about if we want to add 3 ?
How can a bead string help when we are adding $1,2,3$ etc.?
Where will be the best place to start on each number track? Why?

Varied Fluency

Create sentences based on the picture.

Example

There are 4 children playing in a park.
One more child joins them so there will be 5 children playing together.

$$
\begin{aligned}
& 22=29-7 \\
& 22=28-6
\end{aligned}
$$

Can you create an addition pattern by adding in ones and starting at the number 13 ?

```
-00000000000000-00000000-
```

\square Continue the number tracks below.

Year 2| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add and Subtract 1s

Reasoning and Problem Solving

True or False?

These four calculations have the same answer.

$$
\begin{array}{ll}
1+4+2 & 4+2+1 \\
2+4+1 & 4+1+2
\end{array}
$$

These four calculations have the same answer.

$$
\begin{array}{ll}
7-3-2 & 2-3-7 \\
3-2-7 & 7-2-3
\end{array}
$$

True, because they all equal 7 and addition is commutative.

False, because subtraction isn't commutative.

Jack lives 5 km from school.
Annie lives 4 km from school in the same direction.

What is the distance between Jack and
Annie's houses?

After travelling to and from school, Jack
thinks that he will walk 1 km more than
Annie. Is he correct?
Explain your answer.
What will be the difference in distance walked after 2 school days?

1 km

No, he will walk 2 km further. 1 km on the way to school and 1 km on the way home.

4 km

3-digit \& 1-digit Numbers

Notes and Guidance

During this small step, children add and subtract ones from a 3-digit number without an exchange. They consider which digits are affected when adding ones. For example, if a child is completing $214-3$ and $214+3$ they see that they just need to focus on the ones column. Therefore, all they need to do is $4+3$ and $4-3$ respectively.
The use of the column method can be used but mental arithmetic is the best strategy.

Mathematical Talk

Which column do I need to focus on?

What is the same about the subtractions? What changes each time? Write the number sentence that would come next in each list. Can you write the number sentence that would come before?

Can you use $<$ and $>$ to compare Jack and Tommy's team points?

Varied Fluency

Use the place value grid to complete the calculations.

$$
214-3=\ldots \quad 214+3=
$$

\square Complete:

$356-5=$
$357-5=$
$358-5=$
$359-5=$

$356-5=$
$356-4=$
$356-3=$
$356-2=$

$356-5=$
$366-5=$
$376-5=$
$386-5=$

Jack has 534 team points and gets four more. Tommy has 534 team points and loses four of his. How many team points does each person have? Who has the most?

3-digit \& 1-digit Numbers

Reasoning and Problem Solving

What could her calculation have been?

Her starting numbers are between and include 340 and 350

Did you use a strategy?
Do you see a pattern?

Possible answers
$340+2$
$341+1$
$342+0$
343-1
344-2
345-3
346-4
347-5
348-6
349-7
350-8
When the ones
digit in the 3 -digit
number increases,
the ones we
subtract
decreases

Explain why.

The number line does not, because it starts at 340 not 339

No, I disagree. Alex has subtracted 4 tens not 4 ones.

Add 2-digits and 1-digit

Notes and Guidance

Before crossing the 10 with addition, children need to have a strong understanding of place value. The idea that ten ones are the same as one ten is essential here. They need to be able to count to 20 and need to be able to partition two-digit numbers in order to add them. They need to understand the difference between one-digit and two-digit numbers and line them up in columns. In order to progress to using the number line more efficiently, children need to be secure in their number bonds.

Mathematical Talk

Using Base 10, can you partition your numbers?
Can we exchange 10 ones for one ten?
How many ones do we have? How many tens do we have?

Can you draw the Base 10 and show the addition pictorially?

Varied Fluency

$17+5=$

Can you put the larger number in your head and count on the smaller number? Start at 17 and count on 5
\square Can we use number bonds to solve the addition more efficiently?

Find the total of 28 and 7

- Partition both the numbers.
- Add together the ones.
- Have we got 10 ones?
- Exchange 10 ones for 1 ten.
- How many ones do we have?
- How many tens do we have?

Add 2-digits and 1-digit

Reasoning and Problem Solving

Always, Sometimes, Never	Sometimes, lam thinking of a two- digit number, if I add ones to it, I will only need to change the ones digit.
ones total 10 or	
more you will have	
to exchange them	
which will change	
the tens digit.	

Here are three digit cards.

Place the digit cards in the number sentence.

How many different totals can you find?

What is the smallest total?

What is the largest total?
$67+8=75$
$68+7=75$
$76+8=84$
$78+6=84$
$86+7=93$
$87+6=93$

75 is the smallest total.

93 is the largest total.

Add 3-digit \& 1-digit Numbers

Notes and Guidance

Varied Fluency

Children add ones to a 3-digit number, with an exchange. They discover that when adding ones it can affect the ones column and the tens column.

Children learn that we can only hold single digits in each column, anything over must be exchanged.

The use of 0 e.g. $145-5$ is important so they know to use zero as a place holder.

Mathematical Talk

When you add ones to a number does it always, sometimes or never affect the tens column?

What is the largest digit you can have in each column? Why?
How does using the number line support partitioning the number? What number bonds help us with this method?

We can use Base 10 to solve $245+7$

Use this method to calculate:

$$
357+8 \quad 286+5 \quad 419+1
$$

We can use a number line to calculate $346+7$

Use this method to calculate:

$$
564+8 \quad 716+9 \quad 327+5
$$

\square We can partition our 1-digit number to calculate $379+5$

Use this method to calculate:

Add 3-digit \& 1-digit Numbers

Reasoning and Problem Solving

Always, Sometimes, Never	Always
When 7 and 5 are added together in the	$1+1$
ones column, the digit in the ones column of the answer will always be 2	$2+0$
What other digits would always give a 2	$9+3$
in the ones column? Prove it.	$8+4$
	 will also always give a 2 in the ones column.

Which questions are harder to calculate?

$$
\begin{gathered}
234+3= \\
506+8= \\
455+7= \\
521+6=
\end{gathered}
$$

Explain your answer.

The second and third are harder as an exchange needs to be made.

Subtract 1-digit from 2-digits

Notes and Guidance

Varied Fluency

Just as with addition, children need to have a strong understanding of place value for subtraction. Children need to be able to count to 20 and need to be able to partition two-digit numbers in order to subtract from them. They need to understand the difference between one-digit and two-digit numbers and line them up in columns. In order to progress to using the number line more efficiently, children need to be secure in their numberbonds.

Mathematical Talk

Are we counting backwards or forwards on the number line?
Have we got enough ones to subtract?
Can we exchange a ten for ten ones?
How can we show the takeaway? Can we cross out the cubes?
$22-7=$

Can you put the larger number in your head and count back the smaller number? Start at 22 and count back 7

Can we use number bonds to subtract more efficiently?

Subtract 8 from 24

- Do we have enough ones to take 8
 ones away?
- Exchange one ten for ten ones.
- Take away 8 ones.
- Can you write this using the column method?

Subtract 1-digit from 2-digits

Reasoning and Problem Solving

Jack and Eva are solving the subtraction
$23-9$

Here are their methods:	Eva's method is
most efficient	
because there are	

less steps to take.
The numbers are
quite far apart so
and counted on to 23
Jack's method of
finding the
difference takes a

Mo is counting back to solve 35-7		Mo is not correct
He counts		as he has included 35 when counting
$35,34,33,32,31,30,29$		back.
Is Mo correct?		This is a common mistake and can
Explain your answer.		be modelled on a number line.
Match the number sentences to the number bonds that make the method more efficient.		$\begin{aligned} & 42-5-42-2-3 \\ & 42-7 \\ & 43-3-3 \end{aligned}$
42-5	42-2-3	$43-8 \times 43-3-5$
42-7	43-3-3	
43-8	43-3-5	
43-6	42-2-5	

Subtract 1-digit from 3-digits

Notes and Guidance

Children subtract a 1-digit number from a 3-digit number using an exchange.

Children need to be secure in the fact that 321 is 3 hundreds, 2 tens and 1 one but that it is also 3 hundreds, 1 ten and 11 ones.

If children are not secure with regrouping, it is important to revisit this before subtracting.

Mathematical Talk

How many ones do we exchange for one ten?
Why do all these subtractions require an exchange? When do we not need to exchange?

Which method do you prefer? Can you calculate the subtractions mentally?

Varied Fluency

Teddy uses Base 10 to calculate 321 - 4

Use this method to calculate:

$$
322-4 \quad 322-7 \quad 435-7
$$

\square Dora uses the part-whole model and number line to solve 132-4

Use this method to calculate:

$$
132-8 \quad 123-8 \quad 123-5
$$

Red team have 672 points.
Blue team have 7 fewer points than red team. How many points do blue team have?

Subtract 1-digit from 3-digits

Reasoning and Problem Solving

Whitney has 125 stickers. She gives less than 10 stickers to Eva. She has an odd number of stickers left.	Whitney might have given Eva 2, 4,6 or 8 stickers. How many stickers might Whitney have given away?
What do you notice is the same about your answers? If Whitney had an even number of answers stickers left, how many might she have given away?	are even. If Whitney had an even number of stickers left she might have given 1, $3,5,7$ or 9 away.
\qquadExplain how you would solve these calculations:	Children explain their methods, they may count on or back, use a number line, part- whole model or
Base 10 $-\quad=558$	$-8=725$

3-digit \& 2-digit Numbers

Notes and Guidance

Children look at what happens to a 3 -digit number when a multiple of 10 is added orsubtracted.
Different representations such as Base 10, arrow cards, place value charts should be used.
The use of the column method is exemplified in this example, but children should explore whether or not this is needed and explain why. Mental methods should be encouraged throughout.

Mathematical Talk

How many tens can we add to 352 without exchanging? How many tens can we subtract from 352 without exchanging?

What patterns can you see between the additions and subtractions?
Can you see links between the columns?
Can you compare the calculations without finding the answer?

Varied Fluency

Use place value counters to complete the number sentences.

$$
352+4 \text { tens }=
$$

$$
352-2 \text { tens }=
$$

\qquad
Complete:

$793-60=$	$793-60=$	$733+60=$
$793-70=$	$783-60=$	$723+60=$
$793-80=$	$773-60=$	$713+60=$
$793-90=$	$763-60=$	$703+60=$

\square Complete using $<,>$ or $=$

$$
\begin{array}{lll}
773+1 & \bigcirc & 773+10 \\
653+10 & \bigcirc & 653-10 \\
647+10 & \bigcirc & 657-10 \\
721+10 & \bigcirc & 653+10
\end{array}
$$

3-digit \& 2-digit Numbers

Reasoning and Problem Solving

When I calculated 392 subtract 20 I used my known fact that $9-2=7$	Rosie was able to use this fact because 9 tens subtract 2 tens is like doing 9 ones subtract 2 ones. We do not need to subtract any ones or hundreds so those columns will stay the same.

Year 3 | Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add 3-digit \& 2-digit Numbers

Notes and Guidance

Children add multiples of 10, to a 3-digit number with an exchange.

They recognise that when adding tens, it can change the tens and hundreds column. Encourage children to count in tens rather than use column addition.

Draw on knowledge of inverse to work out missing number problems.

Mathematical Talk

How many tens do we have? How many tens do we need to exchange for 100 ?

If we know how to count in tens, do we always need to use the column method or other methods?

Would it be easier for us to just count up in our heads?

Varied Fluency

Mo uses Base 10 to calculate $176+40$

IIII
 Use Mo's method to calculate:
 $$
276+40 \quad 266+40 \quad 266+70
$$

Miss Wilson has 237 marbles in a box. She adds 8 more bags of 10 marbles. How many marbles does she have now? Write the calculation for this problem.

Complete the bar models.

| 185 | 40 |
| :--- | :--- | | | 135 |
| :--- | :--- |

What do you notice?

Year 3 | Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add 3-digit \& 2-digit Numbers

Reasoning and Problem Solving

Eva and Amir are calculating $783+90$	Amir's method is a more efficient method of adding 90. Give children time to discuss each method and try them out with different numbers.
$\begin{gathered} 783+100=883 \\ 883-10=873 \end{gathered}$	
Sort these calculations into two groups. Justify your answer. $\begin{aligned} & 257+60 \\ & 70+637 \\ & 40+234 \\ & 20+391 \end{aligned}$	Possible ways to sort: Odds and evens Over and under 500 Exchanging and not exchanging
Compare your groups with a friend. Are they the same?	

Which is the odd one out? Why?	
$336+80$ $453+60$ $347+70$ $285+80$	$285+80$ is the odd one out because in all the others the tens columns add up to 11 tens.

Subtract 2-digits from 3-digits

Notes and Guidance

Varied Fluency

Children subtract multiples of 10 from a 3-digit number, with an exchange. The examples show different ways this concept could be taught using number lines and part-whole models.
The column method could be used, however, it is not the most efficient method.
Counting backwards in tens or using 100 to help will support mental strategies.

Mathematical Talk

How many tens do we exchange one hundred for?

How can we partition 70 to subtract it from 240 more efficiently? Show this on the number line.

Can you model Amir's method using a number line?

Rosie uses Base 10 to subtract 70 from 321

L
 $$
321-70=251
$$

Use Rosie's method to calculate:

$$
321-80 \quad 421-6 \text { tens } \quad 451-60
$$

- Count back in tens to solve 240-70

\square Amir calculates 425 - 90 by subtracting 100 and then adding 10

$$
\begin{gathered}
425-100=325 \\
325+10=335
\end{gathered}
$$

Use Amir's method to solve:

$$
\begin{array}{lll}
386-90 & 574-90 & 212-90
\end{array}
$$

Subtract 2-digits from 3-digits

Reasoning and Problem Solving

Complete the missing digits. $\begin{aligned} & 13 \square-50=85 \\ & 334-\square 0=294 \\ & 545=6 \square 5-70 \end{aligned}$	$\begin{aligned} & 135 \\ & 40 \\ & 615 \end{aligned}$
Whitney thinks the rule for the function machine is subtract 60 Is she correct? Explain why.	She is wrong because 567 subtract 60 is 507 The rule is subtract 70

How many different methods could you use to solve 837-90?	Possible methods: $837-100=737$ $737+10=747$
Share your methods with a partner.	$90=37$ and 53 (could show in part-whole model) $837-37=800$ $800-53=747$
	$837-30=807$ $807-60=747$
	Expanded or formal written methods.

Year 3| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add \& Subtract 100s

Notes and Guidance

Children build on their knowledge of adding 100s together e.g. $300+500$, by adding ones and tens to solve calculations such as $234+500$

It is important to develop flexibility and ask the childrenwhy the column method inn't always the most effective method. Highlight that when adding and subtracting 100s, the ones and tens columns are not affected.

Mathematical Talk

What do you notice when we add and subtract 100s from a3digit number?

Do I need to add or subtract $£ 200$ to solve the worded problem? Can you show this on a number line or a bar model?

Is there more than one way to complete the boxes?

Varied Fluency

Use the place value grid and Base 10 to help you calculate two hundred and thirty-four add three hundred.

Hundreds	Tens	Ones

\square Eva has saved £675
She saved £200 more than Tommy.
How much has Tommy saved?
\square Complete the boxes with a calculation that either adds or subtracts 100s.

Smallest $\longrightarrow 105+100$
$393-200$
Greatest

Add \& Subtract 100s

Reasoning and Problem Solving

Alex	She is correct because both give an answer of 606
Is she correct?	
Explain how you know.	
Teddy starts with the number 356 He adds a multiple of 100 His new number is greater than 500 but less than 800 Complete the table.	He couldn't have added 100, 500 or 600 but he could have added 200, 300 or 400
Numbers he couldn't have added Numbers he could have added	

Complete the scenarios so they match the bar model.

476	200
676	

Ron has \qquad altogether.
He spends \qquad and has $£ 476$ pounds left.

Jack has \qquad
Eva has £200
They have \qquad altogether.

Amir has £200 more than Rosie.
Amir has \qquad
Rosie has \qquad
Draw your own bar model where one of the parts is a multiple of 100
Write scenarios to match the bar model.

Ron has £676

 altogether. He spends $£ 200$ and has £476 pounds left.Jack has £476
Eva has £200
They have $£ 676$ altogether.

Amir has £200
more than Rosie.
Amir has £676
Rosie has $£ 476$

Children will then draw their own bar models to match the numbers they have chosen.

Pattern Spotting

Notes and Guidance

Children consolidate adding ones, tens and hundreds to 3digit numbers.

Drawing the previous steps together, children look for patterns between calculations to enable them to predict answers and to develop their number sense.

Ensure children reflect on the similarities and differences between calculations to highlight the patterns.

Mathematical Talk

What do you notice? Which strategy can we use to add these numbers?

Do we need to write a zero in the hundreds column when there are no hundreds left?

Varied Fluency

What has happened to each starting number? How do you know?

\square Calculate:

$$
\begin{array}{lll}
253+2 & 253+20 & 253+200 \\
253-2 & 253-20 & 253-200
\end{array}
$$

What is the same and what is different about each calculation?
\square If we know $250+40=290$, what else do we know?
Show your findings in part-whole models or bar models and write number sentences to match.

Year 3 | Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Pattern Spotting

Reasoning and Problem Solving

| Dora uses column addition to solve
 $251+4$ | The best strategy
 is to complete $1+$
 4, which is 5 and
 the 2 hundreds
 and 5 tens stay
 the same. | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 2 | 5 | 1 |

Investigate

Does adding and subtracting ones to a 3-digit number only affect the ones column?

Does adding and subtracting tens to a 3-digit number only affect the tens column?

No, the ones can change the ones column and any column to the left e.g. $123+9$ and 402-4
The tens column can change itself and the hundreds column e.g.
$456+50$ and 456-60
When adding and subtracting from any column, it can only affect its own column and columns to the left.

Year 2| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add 2-digit Numbers (2)

Notes and Guidance

Children use Base 10 and partitioning to add together 2digit numbers including an exchange. They could be encouraged to draw the Base 10 alongside recording any formal column method.

They have already seen what happens when there are more than 10 ones and should be confident in exchanging 10 ones for one 10 .

Mathematical Talk

Can you represent the ones and tens using Base 10 ?
What is the value of the digits?
How many ones do we have altogether?
How many tens do we have altogether?
Can we exchange ten ones for one ten?
What is the sum of the numbers?
What is the total?
How many have we got altogether?

Varied Fluency

\qquad tens + \qquad ones $=$ \qquad

Find the sum of 35 and 26

- Partition both the numbers.
- Add together the ones. Have we got 10 ones?
- Exchange 10 ones for 1 ten.
- How many ones do we have?
- Add together the tens. How many do we have altogether?

D Class 3 has 37 pencils.
Class 4 has 43 pencils.

How many pencils do they have altogether?

Year 2| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add 2-digit Numbers (2)

Reasoning and Problem Solving

Can you create a calculation where there will be an exchange in the ones and your answer will have two ones and be less than $100 ?$	There are lots of possible solutions. E.g. $33+29=62$
How many different ways can you solve $19+11 ?$	Children might add the ones and then the tens.
Usplain your method to a partner.	Children should notice that 1 and 9 help explain your method.
are a number	
bond to 10 which	
makes the	
calculation easier	
to complete	
mentally.	

Find all the possible pairs of n
that can complete the addition

How do you know you have found all the pairs?

What is the same about all the pairs of numbers?
$13+29$
$19+23$
$14+28$
$18+24$
$15+27$
$17+25$
$16+26$

All the pairs of
ones add up to 12

Subtract with 2-digits (2)

Notes and Guidance

Children use their knowledge that one ten is the same as ten ones to exchange when crossing a ten in subtraction.

Continue to use concrete manipulatives (such as Base 10) and pictorial representations (such as number lines and partwhole models) to develop the children's understanding.

The skill of flexible partitioning is useful here when the children are calculating with exchanges.

Mathematical Talk

Have we got enough ones to take away?
Can we exchange one ten for ten ones?
How many have we got left?
What is the difference between the numbers?
Do we always need to subtract the ones first? Why do we always subtract the ones first?
Which method is the most efficient to find the difference, subtraction or counting on?

Varied Fluency

Use the number line to subtract 12 from 51

51

Can you subtract the ones first and then the tens?
Can you partition the ones to count back to the next ten and then subtract the tens?
($42-15=$

42	We can't	42		Now we can subtract
	subtract the		\}	the ones and then
402	ones. Can we	30	12	subtract the tens.
$-10 \quad-5$	partition	-10	-5	$42-15=27$
	differently?	20	7	

- Take 16 away from 34

Subtract with 2-digits (2)

Reasoning and Problem Solving

Eva and Whitney are working out some subtractions.	Whitney's answer is 18
Eva's answer is 9	

$$
\left.\begin{aligned}
& \text { Find the greatest whole number that can } \\
& \text { complete each number sentence below. } \\
& \qquad 45-17>14+\ldots
\end{aligned} \right\rvert\, 18
$$

Year 3| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

2-digit \& 3-digit Numbers

Notes and Guidance

Varied Fluency

Children focus on the position of numbers and place value to add and subtract 2 -digit and 3 -digit numbers.

They represent numbers using Base 10 and line up the place value columns.
$26+461$
Match the calculation to the correct representation and solve.
$553-32$

Mathematical Talk

$544+22$
Where would these digits go on the place value chart? Why?
When we subtract, why do we not make both numbers?
Why do we make both numbers when weadd?
What is the same about the additions and subtractions? What changes?

Calculate:

365
$+\quad 23$
---:
$+\quad 32$

2-digit \& 3-digit Numbers

Reasoning and Problem Solving

Explain the mistake Jack has made.

$$
\begin{aligned}
& \text { H T O } \\
& 231
\end{aligned}
$$

$$
+63
$$

Rosie has 77 sweets.
Mo has 121 sweets.
Which addition will find how many sweets they have altogether?

$$
\begin{array}{r}
121 \\
+\quad 77 \\
\hline
\end{array}
$$

Explain your answer.

Jack has put 63 in the wrong place value columns.

Both are correct
because
addition is
commutative
and the
numbers can be
added either
way round.

Year 3| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add 2-digit \& 3-digit Numbers

Notes and Guidance

Varied Fluency

Children deepen their understanding of adding 2-digit and 3digit numbers in this step. They start adding numbers where there is an exchange from ones to tens, they then move on to exchanging tens to hundreds before adding numbers where there are exchanges in both columns.
Highlight the links between the concrete representations and the column method to support children in understanding how the column method works.

Mathematical Talk

What happens when we have 10 ones in a column? How many tens do we exchange 10 ones for? How do we show the exchange in the column method?

What happens when we have 10 tens in a column? How many hundreds do we exchange 10 tens for? How do we show the exchange in the column method?

What do you notice about the additions in the models? How many exchanges do we need to make?

Dexter uses place value counters to calculate $163+52$

Use Dexter's method to calculate:

$$
372+64 \quad 537+82 \quad 537+72 \quad 248+70
$$

\square Complete the models using column addition.
\square

Year 3| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add 2-digit \& 3-digit Numbers

Reasoning and Problem Solving

Here is her working out:

	2	6	5
+		2	7
	2	8	2

Is she correct? Explain why.

Eva is incorrect because she has not exchanged ten ones for one ten or shown this in the column method.

She should have added an extra ten to the tens
column. The
correct answer is 292

Sort the additions into the table.			No exchange: $\begin{aligned} & 910+79 \\ & 342+35 \end{aligned}$ Exchange 10 ones $\begin{aligned} & 375+18 \\ & 456+27 \end{aligned}$
No exchange	Exchange 10 ones	Exchange 10 tens	
$\begin{array}{lll} 375+18 & 456+72 & 912+79 \\ 910+79 & 456+27 & 342+35 \end{array}$ Can you write 2 more additions in each column?			$912+79$ Exchange 10 tens $456+72$
Choose one 2-digit and one 3-digit number. Write additions that have an exchange in the ones and the tens columns.			$\begin{aligned} & 23+487 \\ & 35+467 \\ & 56+756 \\ & 619+81 \end{aligned}$
$2_{81} 35$	756	467 7	

Year 3| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Subtract 2-digits from 3-digits

Notes and Guidance

Children focus on the position of numbers and place value to subtract 2-digits from 3 -digits using the column method. Children start by exchanging one ten for ten ones. Next they exchange one hundred for ten tens before subtracting numbers where there are exchanges in both columns. Encourage children to use Base 10 and place value counters so they can physically exchange and see the link between the concrete and the written column method.

Mathematical Talk

How does the concrete representation match the written column method?

How do you know that you need to exchange?
What do you notice about the subtractions to find the missing numbers? How many exchanges are there?

Varied Fluency

Teddy uses Base 10 to subtract 28 from 255

Use Teddy's method to calculate:

$$
365-48 \quad 492-38 \quad 722-16
$$

\square Alex uses place value counters to calculate 434-72

Use Alex's method to calculate: 248-67 247-67 354-92

	3	4	1
	3	4	
-		7	2
	3	6	2

Calculate the missing number in each model.

526	
78	$?$

Subtract 2-digits from 3-digits

Reasoning and Problem Solving

Rosie thinks $352-89=337$

	H	T	O
	3	5	2
-		8	9
	3	3	7

Is she correct?
Explain why.
Use $<,>$ or $=$ to make the statements correct.

$$
\begin{aligned}
& 234-47 \bigcirc 234-57 \\
& 472-84 \bigcirc 473-84 \\
& 406-89 \bigcirc 416-99
\end{aligned}
$$

Rosie is incorrect because she has subtracted the digits in a different order instead of exchanging.

The answer should be 263

Accept different answers as long as they are justified.
Children might
even suggest
subtracting 60
and then adding 3

Add Two 3-digit Numbers (1)

Notes and Guidance

Children add two 3-digit numbers with no exchange. They should focus on the lining up of the digits and setting the additions clearly out in columns.
Having exchanged between columns in recent steps, look out for children who exchange ones and tens when they don't need to.
Reinforce that we only exchange when there are 10 or more in a column.

Mathematical Talk

Where would these digits go on the place value chart? Why?

Why do we make both numbers when weadd?
Can you represent \qquad using the equipment?

Can you draw a picture to represent this?
Why is it important to put the digits in the correct column?

Varied Fluency

Complete the calculations.

н	T	\bigcirc
-0७○	O000	\mid
$\bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$	-(1)

\qquad $+$ \qquad

\qquad $+$ \qquad
\qquad
] Use the column method to calculate:

- Three hundred and forty-five add two hundred and thirty-six.
- Five hundred and sixteen plus three hundred and sixty-two.
- The total of two hundred and forty-seven and four hundred and two.

Add Two 3-digit Numbers (1)

Reasoning and Problem Solving

Jack is calculating $506+243$
Here is his working out.

		5	6
+	2	4	3
	2	9	9

Can you spot Jack's mistake? Work out the correct answer.

Jack hasn't used zero as a place holder in the tens column.
The correct answer should be 749

Year 3| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add Two 3-digit Numbers (2)

Notes and Guidance

Children add two 3-digit numbers with an exchange. They start by adding numbers where there is one exchange required before looking at questions where they need to exchange in two different columns. Children may use Base 10 or place value counters to model their understanding. Ensure that children continue to show the written method alongside the concrete so they understand when and why an exchange takes place.

Mathematical Talk

How many ones do we need to exchange for one ten?

How many tens do we need to exchange for one hundred?
Can you work out how many points Eva and Ron scored each over the two games?

Why is it so important to show the exchanged digit on the column method?

Varied Fluency

Use place value counters to calculate $455+436$

H	T	0		4	5	5
®®®	(1)(1)(0) (-) (-)	(1) 1				
			+	4	3	6
	(1) (-) 0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned} 1$				

\square Eva and Ron are playing a game.
Eva scores 351 points and Ron scores 478 points.
How many points do they score altogether?
How many more points does Ron score than Eva?
Eva and Ron play the game again.
Eva scores 281 points, Ron scores 60 less than Eva. How many points do they score altogether?
\square Complete the models.

| 457 | 187 |
| :--- | :--- | :--- |
| | $\mathbf{\| c \|} 349$ |

Year 3 | Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Add Two 3-digit Numbers (2)

Reasoning and Problem Solving

Roll a 1 to 6 die.
Fill in a box each time you roll.

\square
Can you make the total:

- An odd number
- An even number
- A multiple of 5
- The greatest possible number
- The smallest possible number

Discuss the rules with the children and what they would need to roll to get them e.g. to get an odd number only one of the ones should be odd because if both ones have an odd number, their total will be even.
correct.

$487+368 \bigcirc$| $487+468$ |
| :--- |
| $326+258 \bigcirc$ |
| $325+259$ |
| $391+600=401+\ldots$ |,$~ \$ ~$

Explain why you do not have to work out the answers to compare them.

$$
<
$$

$$
=
$$

In the first one we start with the same number, so the one we add more to will be greater.
In the second 325 is one less than 326 and 259 is one more than 258 , so the total will be the same. In the last one 401 is 10 more than 391, so we need to add 10 less than 600.

Year 3| Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Subtract 3-digits from 3-digits (1)

Notes and Guidance

It is important for the children to understand that there are different methods of subtraction. They needto explore efficient strategies for subtraction, including:

- counting on (number lines)
- near subtraction
- number bonds

They then move on to setting out formal column subtraction supported by practical equipment.

Mathematical Talk

Which strategy would you use and why?

How could you check your answer is correct?
Does it matter which number is at the top of the subtraction?

Varied Fluency

We can count on using a number line to find the missing value on the bar model. E.g.

607	
203	404

Use this method to find the missing values.

390	
273	$?$

294	
$?$	134

There are 146 girls and boys in a swimming club. 115 of them are girls. How many are boys?

Mo uses Base 10 to subtract 142 from 373

H	T	O
	NHI才才	exx

Use Mo's method to calculate:

565-154
565-145
565-165

Subtract 3-digits from 3-digits (1)

Reasoning and Problem Solving

\(\left.$$
\begin{array}{l|l|}\hline \text { Start with the number } 888 \\
\text { Roll a } 1-6 \text { die three times, to make a 3- } \\
\text { digit number. } \\
\text { Subtract the number from } 888 & \begin{array}{l}\text { The smallest } \\
\text { difference is } 222 \\
\text { What number have you got now? } \\
\text { from rolling } 111\end{array} \\
\text { What's the smallest possible difference? } & \begin{array}{l}\text { The largest } \\
\text { difference is } 777 \\
\text { from rolling } 666\end{array} \\
\text { What's the largest possible difference? } & \begin{array}{l}\text { Children will never } \\
\text { have a multiple of } \\
10 \\
\text { because you }\end{array}
$$

What if all the digits have to be different? roll an 8 to

Wubtract 8 ones.\end{array}\right\}\)| Child you ever find a difference that is a |
| :--- |
| multiple of 10? Why? |
| Do you have more odd or even |
| differences? | | investigate what is |
| :--- |
| subtracted in the |
| ones column to |
| make odd and even |
| numbers. |

Use the digit cards to complete the calculation.

The digits in the shaded boxes are odd.
Is there more than one answer?

Possible answers include:
$987-647=340$
$879-473=406$

Year 3 | Autumn Term | Week 4 to 8 - Number: Addition \& Subtraction

Subtract 3-digits from 3-digits (2)

Notes and Guidance

Children explore column subtraction using concrete manipulatives. It is important to show the column method alongside so that children make the connection to the abstract method and so understand what is happening.
Children progress from an exchange in one column, to an exchange in two columns. Reinforce the importance of recording any exchanges clearly in the written method.

Mathematical Talk

Which method would you use for this calculation and why?
What happens when you can't subtract 9 ones from 7 ones? What do we need to do?

How would you teach somebody else to use column subtraction with exchange?

Varied Fluency

Complete the calculations using place value counters.
$372-145$

629-483

Complete the column subtractions showing any exchanges.

	H	T	O
	6	8	3
-	2	3	4

	H	T	O
	2	3	4
-	1	9	5

	H	T	O
	5	0	7
-	4	5	1

Why do we exchange? When do we exchange?

Subtract 3-digits from 3-digits (2)

Reasoning and Problem Solving

Work out the missing digits.
\qquad H T O 5 $?$ 3 - 2 1 8 3 1 5 H T O $?$ 0 $?$ - 2 $?$ 8 2 4 6

Estimate Answers

Notes and Guidance

Children check how reasonable their answers are. While rounding is not formally introduced until Year 4, it is helpful that children can refer to 'near numbers' to see whether an estimate is sensible.
Discuss why estimations are important. Consider real life situations where children or adults need to estimate. Encourage children to estimate calculations before working out precisely to help to check working.

Mathematical Talk

What would you estimate this to be?

Why did you choose this number?
Why is/isn't this a sensible estimation to an answer?

How does estimating answers help us in real life?

Varied Fluency

Estimate the position of arrows A and B on the number line.
Use your estimations to estimate the difference between A and B.

\square Match each number to it's 'near number'.

497	304 52 30	5

Use the near numbers to estimate the answers to the calculations:

$497+304$	$304-27$	$27+52+304$
$27+304$	$497-52$	$304-52-27$
$52+497$	$497-304$	$304+52-27$

Estimate Answers

Reasoning and Problem Solving

Is this a good estimate? Why?	Yes, because he be 50 because I will subtract 100 from 150
Are there any other ways he could have two estimated?	He could have numbers close to the original numbers. rounded to the nearest 10 and calculated.
$140-100(=40)$	

Use the number cards to make different
calculations with an estimated answer of
70
:---
$121-48$
$(120-50)$
$41+33$
$(40+30)$
$398-328$
$(400-330)$

Check Answers

Notes and Guidance

Children explore ways of checking to see if an answer is reasonable.

Checking using inverse is to be encouraged so that children are using a different method and not just potentially repeating an error, for example, if they add in a different order.

Mathematical Talk

How can you tell if your answer is sensible?
Does knowing if a number is close to a multiple of 100 help when adding and subtracting 3-digit numbers?
How does it help?
Does it help to check your answer if you spot which numbers are near to multiples of 10 ?

How does counting in 10s, 50 s and 100s help?

Check Answers

Reasoning and Problem Solving

| MoIf I add two numbers
 together, I can check my
 answer by using a
 subtraction of the same
 numbers after e.g. to
 check $23+14$,
 I can do $14-23$ | No, because you
 cannot have "part
 subtract part". |
| :--- | :--- | :--- |
| Do you agree? Explain why. | You need to find
 the whole and this
 needs to be at the
 start of the
 subtraction then
 you subtract a part
 to check the
 remaining part. |

I completed an addition and then used the inverse to check my calculation.	Possible answers: $355-105=250$
When I checked my calculation, the answer was 250.	$\begin{aligned} & 605-355= \\ & 250 \end{aligned}$
One of the other numbers was 355 . What could the calculation be?	So the calculation could have been:
$\begin{aligned} & _^{+}+\ldots \\ & \ldots-\ldots=250 \end{aligned}$	$\begin{aligned} & 250+105=355 \\ & 250+355= \\ & 605 \end{aligned}$

White
 Autumn - Block 3
 Multiplication \& Division

Overview

Small Steps

Notes for 2020/21

Children should have met the 2, 5 and 10 times table including being able to divide by 2,5 and 10. However it may not be fully embedded.

These recap steps could be filtered in during starters or morning work to aim for fluency.

Overview

Small Steps

Notes for 2020/21

Multiply by 4
Divide by 4
The 4 times table
Multiply by 8
Divide by 8
The 8 times table

Understanding of the 4 and 8 times table relies on a deep knowledge of the 2 s , therefore a recap would be useful.

Multiplication - Equal Groups

Notes and Guidance

Children recap their understanding of recognising, making and adding equal groups. This will allow them to build on prior learning and prepare them for the next small steps.

Mathematical Talk

What is the same and what is different between each of the groups?

What does the 3 represent?
What does the 8 represent?
How can we represent the groups?

Varied Fluency

Describe the equal groups.

___ equal groups of \qquad
___ equal groups of \qquad
How many different ways can you represent: Six equal groups with 4 in each group? Six 4s?
\square Complete:

Say it	Add It	
There are__ equal groups with in each group.		
There are__ altogether.		

Multiplication - Equal Groups

Reasoning and Problem Solving

The Multiplication Symbol

Notes and Guidance

Varied Fluency

Children are introduced to the multiplication symbol for the first time. They should link repeated addition and multiplication together, using stem sentences to support their understanding.
They should also be able to interpret mathematical stories and create their own involving multiplication.
The use of concrete resources and pictorial representations is still vital for understanding.

Mathematical Talk

What does the 3 represent? What does the 6 represent?
There are \qquad equal groups with \qquad in each group. There are three \qquad .
\square Complete:

Three 2s	Draw It	Addition	Multiplication
There are 3			
equal groups			
with 2 in each			
group.			

What does 'lots of' mean?
Complete:

Addition	Multiplication	Story
$10+10+10$		
	6×5	

The Multiplication Symbol

Reasoning and Problem Solving

Is Mo correct? Explain why. Draw an image to help you.	He is correct because $\begin{aligned} & 3+3+3=9 \\ & \text { and } 3 \times 3=9 \end{aligned}$
Use $<,>$ or $=$ to make the statements correct.	$\begin{aligned} & 3 \times 5<5+5+ \\ & 5+5 \\ & 2 \times 2=2+2 \\ & 10 \times 2>5+5+ \\ & 5 \end{aligned}$

Think of a multiplication to complete:	Any two numbers which multiply together to give an answer of less than 18
$6+6+6>\ldots \times$	$6+6=2 \times 6$ The total is 12, what could the addition and multiplication be?
	$2+2+2+2+2+2$ $=6 \times 2$
	$3+3+3+3=4 \times 3$
$4+4+4=3 \times 4$	
$12=1 \times 12$	
	$1+1+1+1+1+1+$
$1+1+1+1+1=12$	
$\times 1$	

Use Arrays

Notes and Guidance

Varied Fluency

Children explore arrays to see the commutativity of multiplication facts e.g. $5 \times 2=2 \times 5$

The use of the array could be used to help children calculate multiplication statements.

The multiplication symbol and language of 'lots of' should be used interchangeably.

Mathematical Talk

Where are the 2 lots of 3 ?
Where are the 3 lots of 2 ?
What do you notice?
What can we use to represent the eggs?
Can you draw an image?
\qquad
On the image, find 2×5 and 5×2

Can you represent this array using another object?
\square Complete the number sentences to describe the arrays.

and \qquad
\qquad

\square Draw an array to show:
$4 \times 5=5 \times 4$
3 lots of $10=10$ lots of 3

Use Arrays

Reasoning and Problem Solving

With 12 cubes, how many different
arrays can you create?
Once you have created your array
complete:

The 2 Times-Table

Notes and Guidance

Children should be comfortable with the concept of multiplication so they can apply this to multiplication tables.

Images, as well as number tracks, should be used to encourage children to count in twos.

Resources such as cubes and number pieces are important for children to explore equal groups within the 2 times-table.

Mathematical Talk

If 16 p is made using 2 p coins, how many coins would there be?

How many 2s go into 16 ?
How can the images of the 5 bicycles help you to solve the problems?

Varied Fluency

Count in 2 s to calculate how many eyes there are.

There are \qquad eyes in total.
\qquad \times \qquad $=$
\square Complete the number track.

2	4		8		12
14	16	18			24

	2	4	6	8	

\square How many wheels are there on five bicycles?

If there are 14 wheels, how many bicycles are there?

The 2 Times-Table

Reasoning and Problem Solving

The 5 Times-Table

Notes and Guidance

Varied Fluency

Children can already count in 5 s from any given number. They will also have developed understanding of the 2 timestable.

This small step is focused on the 5 times table and it is important to include the use of zero. Children should see the $=$ sign at both ends of the calculation to understand that it means 'equals to'.

Mathematical Talk

\qquad

If there are 30 petals, how many flowers? Can you count in 5 s to 30 ? How many 5 s go into 30 ?

How many 5 s go into 35 ?
What does each symbol mean?

How many petals altogether?

Write the calculation.
\square There are 35 fingers.
How many hands?

$$
\times 5=35
$$

$\ldots \times 5=35$

Use $<,>$ or $=$ to make the statements correct.
$2 \times 5$$5 \times 2$
$3 \times 2 \bigcirc 4 \times 5$
$10 \times 5 \bigcirc 5 \times 5$

The 5 Times-Table

Reasoning and Problem Solving

Is Mo correct?	Mo is incorrect because some of the multiples of the five times- table are even, e.g. $10,20,30$
Explain your answer.	Every number in the
Tubes of tennis balls come in packs of table is odd. 2 and 5	Whitney could have: 4 packs of 5 and 1 Whitney has 22 tubes of balls. How many of each pack could she have?
11 packs of 2 and 0 packs of 5, 2 packs of 5 and 6 How many ways can you do it?	packs of 2

Tommy and Rosie have both drawn bar models to show 7×5

What's the same and what is different about their bar models?

Draw your own bar model to represent 4×5

The total shown is the same.
Tommy's bar shows seven lots of 5 whereas
Rosie's bar show
five lots of 7

Children can

choose either way
to represent 4×5

Make Equal Groups - Sharing

Notes and Guidance

Children divide by sharing objects into equal groups using one-to-one correspondence. They need to do this using concrete manipulatives in different contexts, then move on to pictorial representations.

Children will be introduced to the ‘‘\div ’ symbol. They will begin to see the link between division and multiplication.

Mathematical Talk

How many do you have to begin with?
How many equal groups are you sharing between?
How many are in each group?
How do you know that you have shared the objects equally?
\qquad has been shared equally into \qquad equal groups.
I have \qquad in each group.
__groups of \qquad make \qquad

Varied Fluency

\square Share the 12 cubes equally into the two boxes.
There are \qquad cubes altogether.
There are \qquad boxes.
There are \qquad cubes in each box.

Can you share the 12 cubes equally into 3 boxes?
\} 2 4 children are put into 4 equal teams.
How many children are in each team?
Can you use manipulatives to represent the children to show how you found your answer?
\square Ron draws this bar model to divide 20 into 4 equal groups.
How does his model represent this?
He writes $20 \div 4=5$

What other number sentences could Ron create using his model?

Make Equal Groups - Sharing

Reasoning and Problem Solving

This is what he does:

$$
40 \div 2=20
$$

Is it possible to work out $60 \div 3$ in the same way?
Prove it.
Is it possible to work out $60 \div 4$?
What is different about this calculation?

Possible answer :

For $60 \div 4$ the children will need to exchange 2 tens for 20 ones so they can put one 10 and 5 ones into each group.

Alex has 20 sweets and shares them between 5 friends.

Tommy has 20 sweets and shares them between 10 friends.

Whose friends will receive the most sweets?

How do you know?

Alex's friends get more because Tommy is sharing with more people so they will get fewer sweets each. Alex's friends will get 4 sweets each whereas Tommy's friends will only get 2 sweets each.

Year $2 \mid$ Spring Term | Week 1 to 2 - Number: Multiplication \& Division

Make Equal Groups - Grouping

Notes and Guidance

Children divide by making equal groups. They then count on to find the total number of groups.

They need to do this using concrete manipulatives and pictorially in a variety of contexts.

They need to recognise the link between division, multiplication and repeated addition.

Mathematical Talk

How many do you have to begin with? How many are in each group? How many groups can you make?

How long should your number line be? What will you count up in?

Varied Fluency

\square Pencils come in packs of 20
We need to put 5 in each pot. How many pots will we need?

There are \qquad pencils altogether.
There are \qquad pencils in each pot.
There are \qquad pots.
\square Mrs Green has 18 sweets. She puts 3 sweets in each bag. How many bags can she fill?

Mo uses a number line to work out how many equal groups of 2 he can make from 12

Use a number line to work out how many equal groups of 5 you can make from 30

Make Equal Groups - Grouping

Reasoning and Problem Solving

Divide by 2

Notes and Guidance

Varied Fluency

Children should be secure with grouping and sharing. They will use this knowledge to help them divide by 2

They will be secure with representing division as an abstract number sentence using the division and equals symbol.

Children should be able to count in 2 s and know their 2 times table.

Mathematical Talk

What do you notice when you group these objects into twos?
Is there a link between dividing by 2 and halving?
What is different about sharing into two groups and grouping in twos?

Can we write a multiplication sentence as well as a division sentence? What do you notice?

Complete the stem sentences.

I have \qquad cubes altogether.
 There are \qquad in each group.
There are \qquad groups.

\square Group the socks into pairs.

\square
\square
\square

Complete the number sentences.

\square Mo and Tommy have 12 sweets between them. They share them equally. How many sweets does each child get?

There are \qquad sweets altogether.
There are \qquad groups.
There are \qquad in each group.

Complete the bar model and write a calculation to match.

Divide by 2

Reasoning and Problem Solving

I have 24 p. I divide it equally between 2 friends. How much will they get each?	The calculation is the same in both. I have 24p in 2 p coins. How many $2 p$ coins do I have?
Consider the two questions above. What is the same and what is different?	question we are sharing, whereas in the second question we are grouping.
Tommy and Annie have some counters.	Tommy has 30 counters.
Tommy shares his counters into 2 equal	
groups.	Annie has 38 He has 15 in each group.
Annie groups her counters in twos. She has 19 groups.	Annie has 8 more. Children could
Who has more counters and by how	have compared 15 many? How did you work it out?

Ron's friends
Each friend receives fewer than 50 grapes.

Complete the sentences to describe the number of grapes Ron started with.

He must have started with...
He could have started with...
He can't have started with...

Possible answer:

He must have started with an even number of grapes.

He could have started with 40 grapes.

He can't have started with 100 grapes.

Year 2 | Spring Term | Week 1 to 2 - Number: Multiplication \& Division

Divide by 5

Notes and Guidance

During this step, children focus on efficient strategies and whether they should use grouping or sharing depending on the context of the question.

They use their knowledge of the five times table to help them divide by 5

They will continue to see the $=$ sign both before and after the calculation.

Mathematical Talk

How can we represent the problem using objects/images?
How does knowing your 5 times table help when dividing by 5 ?
Circle all the multiples of 5 on a 100 square. What do you notice about the numbers? Can you explain the pattern? How does this help you to divide these numbers?

When would we count in 5s?

Varied Fluency

\square Take 30 cubes.
How many towers of 5 can you make?
You can make \qquad towers of 5
\qquad towers of 5 is the same as 30
30 is the same as \qquad towers of 5

■ 40 pencils are shared between 5 children.

How many pencils does each child get?
\square Group the 1 p coins into 5 s .
 How many 5p coins do we
 need to make the same amount of money?
Draw coins and complete the missing information.

- __ lots of $5 p=20$ one pence coins
- __lots of $5 p=20 p$
- $20 p=\ldots \times 5 p$
- $20 p \div 5=$ \qquad

Divide by 5

Reasoning and Problem Solving

A party bag contains 5 sweets. A jar contains 5 party bags. Ron has 75 sweets. How many party bags will he need? How mars.

Divide by 10

Notes and Guidance

Children should already be able to multiply by 10 and recognise multiples of 10 . They will need to use both grouping and sharing to divide by 10 depending on the context of the problem.

Children start to see that grouping and counting in 10s is more efficient than sharing into 10 equal groups.

Mathematical Talk

What can we use to represent the problem?
How does knowing your 10 times table help you to divide by 10?

Circle all the multiples of 10 on a hundred square.
What do you notice? Can you explain the pattern?

Varied Fluency

Apples can be sold in packs of 10 How many packs can be made below?

When 30 apples are sold in packs of 10 , \qquad packs of apples can be made.
Can you show this in a bar model?
 Label and explain what each part represents.

I have 70p in my pocket made up of 10p coins. How many coins do I have? Draw a picture to prove your answer.
\square Fill in the missing numbers.

- $70 \div 10=$ \qquad
- 6 tens $\div 1$ ten $=$ \qquad
- $5=$ \qquad $\div 10$
- There are
\qquad tens in 40
\qquad ?

Divide by 10

Reasoning and Problem Solving

Mrs Owen has some sweets.

She shares them equally between 10 tables.

How many sweets could each table have?

Find as many ways as you can.
What do you notice about your answers?

True or false?

Dividing by 10 is the same as dividing by 5 then dividing by 2

They could have:
$10 \div 10=1$
$20 \div 10=2$
$30 \div 10=3$
$40 \div 10=4$
$50 \div 10=5$
etc

The tens digit is the same as the answer.

True

Cakes are sold in boxes of 10 Jack and Alex are trying to pack these cakes into boxes.

웁웁웁붑웁
읍웁웁웁웁
웁ㅇㅂㅂㅇㅂㅂㅇㅂㅂㅂㅂㅂ
웁웁웁옵옵옵
Jack says,

웁 웁웁웁웁웁 -- - - - - - - - - - - -9

Alex says,

There are 6 groups of 10

붑 - -9.9 - 9
 -9-9-9-90

Alex is correct because there are 60 cakes and 60 divided by 10 is 6

Jack has

 incorrectlygrouped the cakes, he might have counted the rows wrong. He hasn't put them in 10s. He incorrectly assumed there were 10 in each row.

Who is correct? Explain how you know.

Multiply by 3

Notes and Guidance

Children draw on their knowledge of counting in threes in order to start to multiply by 3

They use their knowledge of equal groups to use concrete and pictorial methods to solve questions and problems involving multiplying by 3

Mathematical Talk

How many equal groups do we have?
How many are in each group?
How many do we have altogether?
Can you write a number sentence to show this?
Can you represent the problem in a picture?
Can you use concrete apparatus to solve the problem?
How many lots of 3 do we have?
How many groups of 3 do we have?

Varied Fluency

There are five towers with 3 cubes in each tower. How many cubes are there altogether?
\qquad $+\ldots+$ \qquad $+\ldots+$ \qquad $=$
\qquad \times \qquad
\qquad

There are 7 tricycles in a playground. How many wheels are there altogether? Complete the bar model to find the answer.

There are 3 tables with 6 children on each table. How many children are there altogether?
\qquad lots of \qquad $=$ \qquad
\qquad \times \qquad $=$ \qquad

Multiply by 3

Reasoning and Problem Solving

There are 8 children. Each child has 3 sweets. How many sweets altogether?	There are 24 sweets altogether. Use concrete or pictorial representations to show this problem.
Write another repeated addition and multiplication problem and ask a friend to represent it.	Children may use items such as counters or cubes. They could draw a bar model for a pictorial representation.

If $5 \times 3=15$, which number sentences would find the answer to 6×3 ?	$5 \times 3+3$
- $5 \times 3+6$	lot of 3 will find the answer.
- $5 \times 3+3$	
- $15+3$	$15+3$ because adding one more
- $15+6$	lot of 3 to the
- 3×6	answer to 5 lots will give me 6 lots.
Explain how you know.	
	3×6 because 3
	$\times 6=6 \times 3$
	(because
	multiplication is
	commutative).

Year 3 | Autumn Term | Week 9 to 12 - Number: Multiplication \& Division

Divide by 3

Notes and Guidance

Children explore dividing by 3 through sharing into three equal groups and grouping in threes.

They use concrete and pictorial representations and use their knowledge of the inverse to check their answers.

Mathematical Talk

Can you put the counters into groups of three?
Can you share the number into three groups?
What is the difference between sharing and grouping?

Varied Fluency

Circle the counters in groups of 3 and complete the division.

\qquad $\div 3=$ \qquad

Circle the counters in 3 equal groups and complete the division.

\qquad $\div 3=$ \qquad

What's different about the ways you have circled the counters?
\square There are 12 pieces of fruit. They are shared equally between 3 bowls. How many pieces of fruit are in each bowl? Use cubes/counters to represent fruit and share between 3 circles.

Bobbles come in packs of 3
If there are 21 bobbles altogether, how many packs are there?

Divide by 3

Reasoning and Problem Solving

The 3 Times Table

Notes and Guidance

Children draw together their knowledge of multiplying and dividing by three in order to become more fluent in the three times table.

Children apply their knowledge to different contexts.

Mathematical Talk

Can you use concrete or pictorial representations to help you?

What other facts can you link to this one?
What other times table will help us with this question?

Varied Fluency

Complete the number sentences.

1 triangle has 3 sides.
3 triangles have \qquad sides in total.
\qquad triangles have 6 sides in total. 5 triangles have \qquad sides in total.
\square Tick the number sentences that the image shows.

$1 \times 3=3$
$3 \times$ \qquad = \qquad
\qquad
\qquad

F Fill in the missing number facts.

$$
\begin{array}{ll}
1 \times 3=- & -\times 3=30 \\
2 \times \ldots=6 & 8 \times \ldots=24
\end{array}
$$

\qquad

$$
=3 \times 3
$$

$6 \times 3=$ \qquad
$9 \times 3=$ \qquad
$21=$ \qquad $\times 3$

The 3 Times Table

Reasoning and Problem Solving

Sort the cards below so they follow round in a loop.	Order:
	18-3
Start at 18-3	$15 \div 3$
Calculate the answer to this calculation.	5×2
The next card needs to be begin with this answer.	$\begin{aligned} & 5 \times 2 \\ & 10 \times 2 \end{aligned}$
	$20+1$ $21 \div 3$
$-3) \div 3$	7×2 $14-2$
5 10 204	$\begin{aligned} & 12 \div 3 \\ & 4 \times 2 \end{aligned}$
$\times 2 \times 2+1 \times 2$	$\begin{aligned} & 8-5 \\ & 3 \times 6 \end{aligned}$
14 -2 $\left.\begin{array}{c}12 \\ \div 3\end{array} \begin{array}{c}3 \\ \times 6\end{array} \begin{array}{c}7 \\ \times 2\end{array}\right]$	

Start this rhythm:
Clap, clap, click, clap, clap, click.
Carry on the rhythm, what will you do on the 15th beat?

How do you know?
What will you be doing on the 20th beat?
Explain your answer.

Clicks are multiples of three.

On the 15th beat, I will be clicking because 15 is a multiple of 3

On the 20th beat, I will be clapping because 20 is not a multiple of 3

Year 3 | Autumn Term | Week 9 to 12 - Number: Multiplication \& Division

Multiply by 4

Notes and Guidance

Building on their knowledge of the two times table, children multiply by 4
They link multiplying by 4 to doubling then doubling again. Children connect multiplying by 4 to repeated addition and counting in 4s.
To show the multiplication of 4 , children may use number pieces, cubes, counters, bar models etc.

Mathematical Talk

How many equal groups do we have?
How many are in each group?
How many do we have altogether?
Can you write a number sentence to show this?
Can you represent the problem in a picture?
Can you use concrete apparatus to solve the problem?
How many lots of 4 do we have?
How many groups of 4 do we have?

Varied Fluency

Match the multiplication to the representation.

$$
4 \times 4
$$

$$
4 \times 6
$$

$$
8 \times 4
$$

How many dots are there altogether?

0	0			
0	0		0	0
:---	:---			
0	0	\(\quad\left[\begin{array}{ll}0 \& 0 		

0 \& 0\end{array} \quad $$
\begin{array}{ll}0 & 0 \\
0 & 0\end{array}
$$ $$
\begin{array}{ll}0 & 0 \\
0 & 0\end{array}
$$\right.\)

There are \qquad dice with \qquad dots on each.

There \qquad fours.
\qquad \times \qquad $=$ \qquad dots.

There are 4 pens in a pack.
How many pens are there in 7 packs?

Multiply by 4

Reasoning and Problem Solving

Year 3| Autumn Term | Week 9 to 12 - Number: Multiplication \& Division

Divide by 4

Notes and Guidance

Varied Fluency

Children explore dividing by 4 through sharing into four equal groups and grouping in fours.

They use concrete and pictorial representations and their knowledge of the inverse to check their answers.

Mathematical Talk

Can you put the buttons into groups of fours?
Can you share the number into four groups?
What is the difference between sharing and grouping?
There are some cars in a car park.
Each car has 4 wheels.
In the car park there are 32 wheels altogether.
How many cars are there?
\qquad \div \qquad $=$ \qquad
\square Complete the bar models and the calculations.

$$
24 \div 4=
$$

\qquad

Divide by 4

Reasoning and Problem Solving

Which of the word problems can be solved using $12 \div 4 ?$	No, the calculation is $12 \times 4=48$
There are 12 bags of sweets with 4 sweets in each bag. How many sweets are there altogether?	Yeseets
Yes, 12 is being	
grouped into 4 s.	

Five children are playing a game.
Mo $=4$ buckets.
They score 4 points for every bucket they knock down.

Mo	16
Eva	28
Tommy	12
Amir	32
Dora	8

How many buckets did they knock down each?
How many buckets did they knock down altogether?
How many more buckets did Eva knock down than Mo?

Eva $=7$ buckets.
Tommy $=3$
buckets.
Amir $=8$ buckets.
Dora $=2$ buckets.

They knocked down 24 buckets altogether.

Eva knocked 3 more buckets down than Mo.

The 4 Times Table

Notes and Guidance

Children use knowledge of known multiplication tables (2, 3, 5 and 10 times tables) and understanding of key concepts of multiplication to develop knowledge of the 4 times table.

Children who have learnt $3 \times 4=12$ can use understanding of commutativity to know that $4 \times 3=12$

Mathematical Talk

What do you notice about the pattern?

Can you use concrete or pictorial representations to help you?
What other facts can you link to this one?
What other times tables will help you with this times table?

Varied Fluency

Use the pictorial representations to complete the calculations.
$1 \times 4=$ \qquad
$2 \times 4=$ \qquad
$3 \times 4=$ \qquad
Continue the pattern.
$\square 2$ cars have eight wheels. How many wheels do four cars have?
$2 \times 4=8$
$4 \times 4=$ \qquad
Three cows have 12 legs. How many legs do six cows have?
$3 \times$ \qquad $=12$
$6 \times$ \qquad $=$

Colour in the multiples of 4 What pattern do you notice?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

The 4 Times Table

Reasoning and Problem Solving

I have forgotten what $4 \times 4 \text { is. }$	$\begin{aligned} & 4 \times 4 \\ & =3 \times 4+4 \\ & =12+4 \end{aligned}$
Jack says, "The answer is more than 3×4 "	$=16$
Complete the calculation to prove this. $4 \times 4=3 \times 4+_{-}$	$\begin{aligned} & 4 \times 4 \\ & =5 \times 4-4 \end{aligned}$
Mo says, "The answer is 4 less than 5×4 "	$\begin{aligned} & =20-4 \\ & =16 \end{aligned}$
Complete the calculation to prove this. $4 \times 4=-\times 4-$	
Teddy says, "The answer is double 2×4 "	$\begin{aligned} & 4 \times 4 \\ & =2 \times 4 \times 2 \\ & =16 \end{aligned}$
Complete the calculation to prove this. $4 \times 4=_\times 4 \times \ldots$	
Whose idea do you prefer? Why?	

Explain why.

The place value counters do not
show counting in fours because each part has 3 in so it is counting in threes.

Year 3 | Autumn Term | Week 9 to 12 - Number: Multiplication \& Division

Multiply by 8

Notes and Guidance

Building on their knowledge of the 4 times table, children start to multiply by 8 , understanding that each multiple of 8 is double its equivalent multiple of 4
They link multiplying by eight to previous knowledge of equal groups and repeated addition. Children explore the concept of multiplying by 8 in different ways, when 8 is the multiplier (first number in the multiplication calculation) and where 8 is the multiplicand (second number).

Mathematical Talk

How many equal groups do we have? How many are in each group? How many do we have altogether? Can you write a number sentence to show this? Can you represent the problem in a picture?
Can you use concrete apparatus to solve the problem?
How many lots of 8 do we have?
How many groups of 8 do we have?
We have 8 groups, how many are in each group?

Varied Fluency

How many legs altogether do four spiders have?
There are \qquad legs on each spider.
\qquad $+\ldots+$ \qquad $+$ \qquad = \qquad
\qquad $\times 8=$ \qquad
If there are \qquad spiders, there will be \qquad legs altogether.

Arrange 24 counters in an array as shown and complete the calculations.
\qquad $+$ $+$ \qquad $=$ \qquad \times \qquad
\qquad
\qquad
\qquad $+\ldots+$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad = \qquad \times \qquad
Fill in the table to show that multiplying by 8 is the same as double, double and double again.

6	6	6	6	6	6	6	6
$6 \times 2=$		$6 \times 2=$		$6 \times 2=$		$6 \times 2=$	
$\ldots 2=$				$\ldots 2=$			
$\ldots 2=$							

Multiply by 8

Reasoning and Problem Solving

$\begin{aligned} & 8 \times 3= \\ & 2 \times 4 \times 3= \\ & 2 \times 2 \times 2 \times 3= \end{aligned}$ \qquad What do you notice? Why do you think this has happened?	All of the answers are equal. 8 has been split (factorised) into 2 and 4 in the second question and 2,2 and 2 in the third.
Jack calculates 8×6 by doing 5×6 and 3×6 and adding them. \qquad $+$ \qquad $=$ \qquad Ron calculates 8×6 by doing $4 \times 6 \times 2$ \qquad $\times 2=$ \qquad Whose method do you prefer? Explain why.	Possible answers: I prefer Jack's method because I know my 5 and 3 times tables. I prefer Ron's method because I know my 4 times table and can double numbers.

What do you notice about each final answer?

Tommy knows the 4 times table table, but is still learning the 8 times table table.

Which colour row should he use? Why?

Each time the final number is 8 times greater than the starting number.

Tommy should use the yellow row because he can double each multiple of 4 to calculate a number multiplied by 8 e.g. $4 \times 6=$ 24 so 8×6 is double that (48).

Year 3 | Autumn Term | Week 9 to 12 - Number: Multiplication \& Division

Divide by 8

Notes and Guidance

Children explore dividing by 8 through sharing into eight equal groups and grouping in eights.

They use concrete and pictorial representations and their knowledge of inverse operations to check their answers.

Mathematical Talk

What concrete/pictorial representations might help you?

Can you group the numbers in eights?
Can you share the number into eights groups?
Can you use any prior knowledge to check your answer?

Varied Fluency

There are 32 children in a PE lesson.
They are split into 8 equal teams for a relay race.
How many children are in each team?
Use counters or multi-link to represent each child.
There are \qquad teams with \qquad children in each team.
\square
Crayons are sold in packs of 8 .
Year 3 need 48 crayons.
How many packs should be ordered?
They should order \qquad packs of crayons.
\square Complete:

$80 \div 8=_$	$8=72 \div-$
$64 \div 8=-$	$8 \times \ldots=40$
$-\times 8=24$	$-\quad \div 8=7$

Divide by 8

Reasoning and Problem Solving

The 8 Times Table

Notes and Guidance

Children use prior knowledge of multiplication facts for 2, 3, 4 and 5 times tables along with the distributive law in order to calculate unknown multiplication facts.

Mathematical Talk

Why is it helpful to partition the number you are multiplying by?

Can you use concrete or pictorial representations to help you?
What other facts can you link to this one?
What other times tables will help you with this times table?

Varied Fluency

Complete the diagram using known facts.

$$
6 \times 8<\begin{array}{r}
5 \times 8=\square \\
\square \times 8=\square \\
\text { altogether } \square
\end{array} 6 \times 8\{
$$

Complete the bar model.

\square Complete the table.

\times	2	4	8
3	6		
	10	20	
			72

Can you spot a pattern in the numbers?

The 8 Times Table

Reasoning and Problem Solving

Explain why	When you add an even number to an even number you always make an even number. The 8 times table is repeated addition so keeps adding an even number each time.
On a blank hundred square, colour multiples of 8 red and multiples of 4 blue. Always, Sometimes, Never - Multiples of 4 are also multiples of 8 - Multiples of 8 are also multiples of 4	1) Sometimes, every other multiple of 4 is also a multiple of 8 The ones in between aren't because the jumps are smaller than 8 2) Always - 8 is a multiple of 4 therefore all multiples of 8 will be multiples of 4

Rosie has some packs of cola which are in a box.

Some packs have 4 cans in them, and some packs have 8 cans in them.

Rosie's box contains 64 cans of pop.

How many packs of 4 cans and how many packs of 8 cans could there be?

Find all the possibilities.

Possible answers:

- 2 packs of 4, 7
packs of 8
- 4 packs of 4,6
packs of 8
- 6 packs of 4,5 packs of 8
- 8 packs of 4,4 packs of 8
- 10 packs of 4,3 packs of 8
- 12 packs of 4, 2 packs of 8
- 14 packs of 4,1
pack of 8

